Cool Surfaces and Shade Trees to Reduce Energy Use and Improve Air Quality in Urban Areas

نویسندگان

  • H. AKBARI
  • H. TAHA
چکیده

Elevated summertime temperatures in urban ‘heat islands’ increase cooling-energy use and accelerate the formation of urban smog. Except in the city’s core areas, summer heat islands are created mainly by the lack of vegetation and by the high solar radiation absorptance by urban surfaces. Analysis of temperature trends for the last 100 years in several large U.S. cities indicate that, since | 1940, temperatures in urban areas have increased by about 0.5–3.08C. Typically, electricity demand in cities increases by 2–4% for each 18C increase in temperature. Hence, we estimate that 5–10% of the current urban electricity demand is spent to cool buildings just to compensate for the increased 0.5–3.08C in urban temperatures. Downtown Los Angeles (L.A.), for example, is now 2.58C warmer than in 1920, leading to an increase in electricity demand of 1500 MW. In L.A., smoggy episodes are absent below about 218C, but smog becomes unacceptable by 328C. Because of the heat-island effects, a rise in temperature can have significant impacts. Urban trees and high-albedo surfaces can offset or reverse the heat-island effect. Mitigation of urban heat islands can potentially reduce national energy use in air conditioning by 20% and save over $10B per year in energy use and improvement in urban air quality. The albedo of a city may be increased at minimal cost if high-albedo surfaces are chosen to replace darker materials during routine maintenance of roofs and roads. Incentive programs, product labeling, and standards could promote the use of high-albedo materials for buildings and roads. Similar incentive-based programs need to be developed for urban trees. Published by Elsevier Science Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Analysis of the Role of Green Walls in Reduction of Heat Islands in Tehran

With the development of urbanization and population growth in the use of land for construction of residential and industrial areas and other infrastructure and turning to remove more vegetation,construction materials and non-systematic misuse of cities,urban areas have forced some changes that pollution and poor air quality,dehydration,high temperatures are some of its results.The temperature d...

متن کامل

Remote sensing for urban heat and cool islands evaluation in semi-arid areas

Cities are experiencing rapid population growth and consequently extensive urbanization. Land-use/land-cover change is one of the important elements worldwide, which significantly affect the environment. This study aims to describe the emergence of urban heat and cool islands as a result of changes in land-use/land-cover. Land surface temperature over a 32-year period in Isfahan city, Iran was ...

متن کامل

Effect of Vegetation Cover on Energy Consumption Optimization due to Reduction of Urban Heat Island intensity: Case of Tehran Metropolitan Area

Urbanization through rapid constructions, is the main cause of high heat absorption in urban centers. In addition, the accumulation of heat energy resulted by removal of vegetation cover, has contributed to formation of urban heat islands (UHIs). The spatial distribution of heat intensity in Tehran Metropolitan Area was studied, and the influence of land use and green cover were analyzed in the...

متن کامل

Effect of Vegetation Cover on Energy Consumption Optimization due to Reduction of Urban Heat Island intensity: Case of Tehran Metropolitan Area

Urbanization through rapid constructions, is the main cause of high heat absorption in urban centers. In addition, the accumulation of heat energy resulted by removal of vegetation cover, has contributed to formation of urban heat islands (UHIs). The spatial distribution of heat intensity in Tehran Metropolitan Area was studied, and the influence of land use and green cover were analyzed in the...

متن کامل

Shade trees reduce building energy use and CO2 emissions from power plants.

Urban shade trees offer significant benefits in reducing building air-conditioning demand and improving urban air quality by reducing smog. The savings associated with these benefits vary by climate region and can be up to $200 per tree. The cost of planting trees and maintaining them can vary from $10 to $500 per tree. Tree-planting programs can be designed to have lower costs so that they off...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001